The neurotoxic effects of hydrogen peroxide and copper in Retzius nerve cells of the leech Haemopis sanguisuga
نویسندگان
چکیده
Oxidative stress and the generation of reactive oxygen species (ROS) play an important role in cellular damage. Electrophysiological analyses have shown that membrane transport proteins are susceptible to ROS. In the present study, oxidative stress was induced in Retzius nerve cells of the leechHaemopis sanguisugaby bath application of 1 mM of hydrogen peroxide (H2O2) and 0.02 mM of copper (Cu) for 20 min. The H2O2/Cu(II) produced considerable changes in the electrical properties of the Retzius nerve cells. Intracellular recording of the resting membrane potential revealed that the neuronal membrane was depolarized in the presence of H2O2/Cu(II). We found that the amplitude of action potentials decreased, while the duration augmented in a progressive way along the drug exposure time. The combined application of H2O2and Cu(II) caused an initial excitation followed by depression of the spontaneous electrical activity. Voltage-clamp recordings revealed a second effect of the oxidant, a powerful inhibition of the outward potassium channels responsible for the repolarization of action potentials. The neurotoxic effect of H2O2/Cu(II) on the spontaneous spike electrogenesis and outward K(+)current of Retzius nerve cells was reduced in the presence of hydroxyl radical scavengers, dimethylthiourea and dimethyl sulfoxide, but not mannitol. This study provides evidence for the oxidative modification of outward potassium channels in Retzius nerve cells. The oxidative mechanism of the H2O2/Cu(II) system action on the electrical properties of Retzius neurons proposed in this study might have a wider significance, referring not only to leeches but also to mammalian neurons.
منابع مشابه
Comparison of the effects of cumene hydroperoxide and hydrogen peroxide on Retzius nerve cells of the leech Haemopis sanguisuga.
Oxidative stress and the production of reactive oxygen species are known to play a major role in neuronal cell damage, but the exact mechanisms responsible for neuronal injury and death remain uncertain. In the present study, we examined the effects of oxidative stress on spontaneous spike activity and depolarizing outward potassium current by exposing the Retzius neurons of the leech to cumene...
متن کاملThe Effect of Sodium Nitroprusside on Resting Membrane Potential of the Leech Retzius Nerve Cells
We have investigated the effect of sodium nitroprusside (SNP) on the membrane resting potential of the leech (Haemopis sanguisuga) Retzius nerve cells (RNC). The membrane potential of RNC of isolated ganglia was recorded in Ringer solution, in SNP solution during the next 30 minutes and after washing out with Ringer solution. We used 1 mmol/L, 2 mmol/L and 5 mmol/L solutions of SNP. Kruskal-Wal...
متن کاملExcitotoxicity of lathyrus sativus neurotoxin in leech retzius neurons.
The effects of Lathyrus sativus neurotoxin were studied on the cell membrane potential and cellular cation composition in Retzius nerve cells of the leech Haemopis sanguisuga, with ion-selective microelectrodes using liquid ion-exchangers. Bath application of 10(-4) mol/l Lathyrus sativus neurotoxin for 3 min depolarized the cell membrane potential and decreased the input resistance of directly...
متن کاملToxicity induced by cumene hydroperoxide in leech Retzius nerve cells: the protective role of glutathione.
In the present study, we studied the ability of glutathione (GSH) to detoxify exogenously applied cumene hydroperoxide (CHP). Exposure of leech Retzius nerve cells to CHP (1.5 mM) induced a marked prolongation of the spontaneous spike potential of these cells. Early after depolarization, and a cardiac-like action potential with a rapid depolarization followed by a sustained depolarization or pl...
متن کاملThe length-tension relationship of the dorsal longitudinal muscle of a leech.
The length-tension relationship of a preparation of the dorsal body wall of the leech Haemopis sanguisuga was determined. Passive tension is low except at very long lengths of the preparation, when it rises steeply. It is due mainly to the epidermis present in the preparation. The active tension curve is very flat, with tension being reduced only at very short and very long lengths. This shape ...
متن کامل